ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
E. M. Fearon, R. T. Tsugawa, P. C. Souers, J. D. Polla, J. L. Hunta
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2239-2244
Research and Development | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24615
Articles are hosted by Taylor and Francis Online.
An ultraviolet absorption feature has been seen in solid deuterium-tritium and hydrogen-tritium at a sensor temperature of 5 K. The peak occurs at 3.6 eV and is about 1.5 eV wide. It disappears when the temperature is raised to about 10 K but reappears upon cooling and is, therefore, radiation induced. At 5 K, the absorption line forms on a time scale of minutes and appears to represent part-per-million levels of electron-mass defects. The suggested model is that of a trapped electron, where the absorption line is the ground state-to-the-conduction band transition. A marked isotope effect is seen between D-T and H-T.