ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Peter H. Handel, Richard T. Schneider
Fusion Science and Technology | Volume 7 | Number 2 | March 1985 | Pages 320-324
Technical Paper | doi.org/10.13182/FST85-A24550
Articles are hosted by Taylor and Francis Online.
The electrostatic resonance of ions can be observed in conditions of strong electron depletion in plasma regions that are small compared with the Debye length, and in conditions of very low degrees of ionization when most electrons are attached to neutral molecules. If observed, this resonance is expected to be broadened by collisions with the background gas. In the limit of collision frequencies, large compared to the resonance frequency, the ion plasma resonance again becomes sharper, albeit at a lower (effective) frequency, corresponding to a collective motion of ions and neutrals of the ion-acoustic wave type. A straightforward simple calculation suggests the possibility of this type of resonance under experimental conditions, which have led to neutron emissions from resonant plasma formations that are interpreted as plasma cavitons.