ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Don Steiner, R. C. Block, B. K. Malaviya
Fusion Science and Technology | Volume 7 | Number 1 | January 1985 | Pages 66-77
Technical Paper | Fusion Reactor | doi.org/10.13182/FST85-A24519
Articles are hosted by Taylor and Francis Online.
A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component. This concept, designated the “integrated-blanket-coil” (IBC) concept, is applied to the poloidal field and blanket systems of a tokamak reactor. An examination of resistive power losses in the IBC suggests that these losses can be limited to ≤10% of the fusion thermal power. By assuming a sandwich construction for the IBC walls, magnetohydrodynamic (MHD)-induced pressure drops and associated pressure stresses are shown to be modest and well below design limits. For the stainless steel reference case examined, the MHD-induced pressure drop was estimated to be ∼⅓ MPa and the associated primary membrane stress was estimated to be ∼47 MPa. The preliminary analyses indicate that the IBC concept offers promise as a means for making fusion reactors more compact by combining blanket and coil functions in a single component.