ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
J.-M. Travere, M.-H. Aumeunier, M. Joanny, T. Loarer, M. Firdaouss, E. Gauthier, V. Martin, V. Moncada, L. Marot, D. Chabaud, E. Humbert, J.-J. Fermé, C. Thellier
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 735-740
Technical Paper | doi.org/10.13182/FST13-A24093
Articles are hosted by Taylor and Francis Online.
The ITER actively cooled tokamak is the next-generation fusion device that will allow study of the burning plasma over hundreds of seconds. ITER plasma-facing component (PFC) real-time protection will be mandatory to minimize operational risks as water leaks and critical heat flux lead to degradation of PFCs. The protection systems routinely used on Tore Supra (TS) or JET are based on infrared (IR) imaging systems controlling and monitoring the power load on the PFCs through surface temperature measurements. Thanks to TS expertise in actively cooled tokamak and long-pulse operation, three urgent research and development domains are discussed in this paper addressing the feasibility and the performance of the PFC protection function for the new and harsh environment of ITER: (a) the understanding of IR signals in a reflective environment using a physics-based light model simulation; (b) a PFC protection data processing architecture for event detection and identification; and (c) the feasibility, performance, and prototyping of the first optical component of the imaging systems - actively cooled, facing the plasma - which will impact the image quality and therefore PFC protection performance.