ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J.-M. Travere, M.-H. Aumeunier, M. Joanny, T. Loarer, M. Firdaouss, E. Gauthier, V. Martin, V. Moncada, L. Marot, D. Chabaud, E. Humbert, J.-J. Fermé, C. Thellier
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 735-740
Technical Paper | doi.org/10.13182/FST13-A24093
Articles are hosted by Taylor and Francis Online.
The ITER actively cooled tokamak is the next-generation fusion device that will allow study of the burning plasma over hundreds of seconds. ITER plasma-facing component (PFC) real-time protection will be mandatory to minimize operational risks as water leaks and critical heat flux lead to degradation of PFCs. The protection systems routinely used on Tore Supra (TS) or JET are based on infrared (IR) imaging systems controlling and monitoring the power load on the PFCs through surface temperature measurements. Thanks to TS expertise in actively cooled tokamak and long-pulse operation, three urgent research and development domains are discussed in this paper addressing the feasibility and the performance of the PFC protection function for the new and harsh environment of ITER: (a) the understanding of IR signals in a reflective environment using a physics-based light model simulation; (b) a PFC protection data processing architecture for event detection and identification; and (c) the feasibility, performance, and prototyping of the first optical component of the imaging systems - actively cooled, facing the plasma - which will impact the image quality and therefore PFC protection performance.