ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
K. Kizu, H. Hiratsuka, Y. Miyo, H. Ichige, T. Sasajima, T. Nishiyama, K. Masaki, M. Honda, N. Miya, N. Hosogane
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 396-409
Technical Paper | doi.org/10.13182/FST02-A236
Articles are hosted by Taylor and Francis Online.
Designs and operations of the gas system and pellet injection systems for JT-60 and JT-60U are described. A gas injection valve that is a key component of the gas injection system was developed using a multilayer piezoelectric element. The maximum flow rate of this system is 43.3 Pam3/s. The valve has mechanism for adjustment at atmospheric side meaning that a repair and an adjustment can be conducted without ventilation inside a vacuum vessel. It was confirmed that the effect of magnetic field and temperature change on the valves in the JT-60U environment was negligible.In JT-60U, two systems of pellet injector - a pneumatic drive and a centrifugal one - were developed. The pneumatic type attained a pellet velocity of 2.3 km/s, which was the world record at the time in 1988. On the other hand, the centrifugal one was developed in 1998. This injector can eject trains of up to 40 cubic (2.1 mm3) pellets at frequencies of 1 to 10 Hz and speed of 0.1 to 1.0 km/s. A guide tube for a magnetic high field side injection (HFS) (top) was also developed in 1999. The pellet injection experiment with the HFS system started in 2000. In addition, another guide tube for HFS(mid) injection was newly developed and installed in March 2001. These systems are working well.