ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
K. Masaki, J. Yagyu, T. Arai, A. Kaminaga, K. Kodama, N. Miya, T. Ando, H. Hiratsuka, M. Saidoh
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 386-395
Technical Paper | doi.org/10.13182/FST02-A235
Articles are hosted by Taylor and Francis Online.
JT-60U has a variety of wall-conditioning methods such as baking of the vacuum vessel, helium Taylor discharge cleaning, helium glow discharge cleaning, tokamak discharge cleaning, and boronization. Using these wall-conditioning methods, the high-power operation of JT-60U has been successfully carried out with the carbon-based first wall. The material behavior of the carbon-based first wall has been investigated, and important knowledge was obtained on mechanical engineering and plasma surface interactions. In order to understand the tritium behavior in JT-60U, tritium retention in the first wall and tritium exhausted through the pumping system were measured. These results yield useful information on the tritium behavior in a future DT fusion machine.