ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
T. Banno, S. Baba, A. Kinbara
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 499-502
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23227
Articles are hosted by Taylor and Francis Online.
Two types of stainless steel, SUS304L and YUS170, are investigated by means of Auger Electron Spectroscopy and Scanning Electron Spectroscopy in order to assess some of their surface properties. In this experiment the effect of atomic hydrogen exposure on the composition of the material surfaces and on the surface topography is examined. For the irradiation with atomic hydrogen at elevated temperatures (100 °C ∼ 400 °C) an effective carbon removal cross section, σ, is obtained. The value of σ is of the order of 10−22 m2 for SUS304L and 10−23 m2 for YUS170. The surface oxygen concentration shows no decrease during the irradiation. Sulphur enrichment is detected after heating the samples due to surface segregation. The SEM observations show topographical surface changes in the grain size and in the roughness after heating and exposure to atomic hydrogen.