ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
S. Fukuda, M. Mohri, T. Yamashina
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 420-423
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23216
Articles are hosted by Taylor and Francis Online.
Compositional changes in the surface region of single-crystal SiC(0001) due to heat treatment and light ion irradiation in the keV range were studied with the use of AES. The heat treatment at 1000°C formed a carbon enriched layer with a thickness of 20 Å on the top surface and a carbon depletion layer below this layer. Both hydrogen and helium ion irradiation caused depletion of silicon atoms in the near surface region and depletion of carbon atoms in the deeper surface region. TRIM computations revealed that in the process of slowing down of incident hydrogen ions, their kinetic energy was transfered preferentially to silicon atoms in the near surface region and to carbon atoms in the deeper surface region. This tendency explains the formation of each altered layer.