ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Emilio Franconi
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 414-419
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23215
Articles are hosted by Taylor and Francis Online.
Transmission of microwave radiation at the lower hybrid frequency may induce multipactor breakdown in the coupling structure of a tokamak machine. To increase the R.F. power throughput to a plasma, secondary electron emission on the waveguide walls and subsequent electron multiplication which cause multipactor breakdown effect must be reduced. In this work measurements of secondary electron yields δ of two kinds of coatings (graphite, TiC) on S.S. were performed as a function of primary beam energies (100 eV; 1.1 keV). Also uncoated stainless steel was measured. Results show δ to have a typical energy dependence, with a peak occuring at 200 to 300 eV for normal electron beam incidence. The graphite and TiC coatings after surface treatment give δmax < 1, which allows to reduce multipacting in waveguide.