ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
O. Auciello, A. A. Haasz, P. C. Stangeby
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 411-413
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23214
Articles are hosted by Taylor and Francis Online.
Methane production yields due to sub-eV H° impact on carbon are in the 10−3 – 10−4 CH4/H° range, i.e., about two orders of magnitude less than CH4/H+ yields for 0.1 – 100 keV H+ ions. Two macroscopic states of “reactivity” were identified for carbon: an “activated” state characterized by a CH4 yield vs. sample temperature curve with a maximum at 700–850K, and a “deactivated” state characterized by a monotonically decreasing yield as a function of temperature. Regarding the retention of sub-eV H° and D° in carbon, our results differ from previously published results. We have observed lower levels of trapped H° (∼1015 H°/cm2), with an apparent trend for saturation, at incident fluences of >2×1019 H°/cm2. Strong synergistic effects have been reported for combined sub-eV H°/5 keV Ar+ impact, while it appears that “insignificant” synergism exists for combined sub-eV H°/e− impact.