ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Jacob B. Romero
Fusion Science and Technology | Volume 6 | Number 1 | July 1984 | Pages 109-117
Technical Paper | Blanket Engineering | doi.org/10.13182/FST84-A23125
Articles are hosted by Taylor and Francis Online.
An engineering evaluation of organic coolants for tokamak fusion power reactors was carried out. The primary focus was to assess the degree of radiolytic damage to the coolant and its effect on blanket design and overall operation. Organic coolants are attractive for fusion applications from a safety perspective. They are chemically inert with lithium metal, yield high tritium breeding performance, and possess low volatility and neutron activation. However, radiolytic damage to the organic molecules was found to severely limit their potential. Protected blanket designs were found to be necessary to reduce the damage to tolerable levels (i.e., of the same order as in the fission reactor system). These blankets require a two-fluid cooling cycle that defeats many of the anticipated advantages of using organic coolants. Their future consideration for tokamak systems is contingent on a number of unresolved issues: How compelling safety requirements turn out to be, what levels of activation of the structure are desired, and what advantages result in recovering tritium from organic systems.