ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Allen L. Camp, Gary W. Cooper
Fusion Science and Technology | Volume 6 | Number 1 | July 1984 | Pages 83-92
Technical Paper | Fusion Reactor | doi.org/10.13182/FST84-A23122
Articles are hosted by Taylor and Francis Online.
The nature of time-dependent energy deposition in inertial confinement fusion-fission hybrid reactors is examined. This energy deposition is both space and time dependent. Calculations are performed for sodium-cooled, uranium-carbide-fueled blankets. Coolant temperature rises on the order of a few degrees and fuel temperature rises on the order of a few tens of degrees are predicted per 15-MJ target pulse. Significant coolant pressure waves having peak pressures on the order of a few megapascals are predicted; however, shock wave formation in the coolant from direct energy deposition is not predicted for these configurations.