ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Gerardo G. Zavala, Terry Kammash
Fusion Science and Technology | Volume 6 | Number 1 | July 1984 | Pages 30-34
Technical Paper | Plasma Engineering | doi.org/10.13182/FST84-A23117
Articles are hosted by Taylor and Francis Online.
High-speed injection of frozen hydrogen isotope pellets is considered by many to be the most effective method of fueling tokamak plasmas. In the plasma environment the pellet disintegration time could be extremely small, placing stringent requirements on the injection speed and the technology of fuel injection. Several models concerning the composition and spatial extent of the ablation cloud surrounding the pellet have been employed, and they have produced widely varying results for the ablation rate. Most, if not all, of these models have relied on spherical geometry to represent the ablation cloud, although in some instances the effects of the magnetic field on the energy flux reaching the pellet have been taken into account and have resulted in an adjustment of the ablation rate by a “flux reduction factor.” The geometric effects on ablation are examined by assuming the ablation surfaces to also be magnetic flux surfaces. Such an assumption is perhaps most natural for nonspherical geometry especially since there is some basis for it in the experimental observations. It is found that such geometric considerations could lead to sizable reductions in the ablation rate. It is also confirmed that the effects of the magnetic field on the ablation rate are not particularly significant.