ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Constellation considers advanced nuclear in Maryland
Constellation is considering adding 2,000 MW of nuclear energy at Calvert Cliffs, located on Chesapeake Bay near Lusby, Md., which would effectively double the site’s output, according to the company’s near- and long-term project proposals submitted to the Marland Public Service Commission this week.
Masami Ohnishi, Akira Saiki, Masao Okamoto
Fusion Science and Technology | Volume 5 | Number 3 | May 1984 | Pages 326-333
Technical Paper | Plasma Engineering | doi.org/10.13182/FST84-A23108
Articles are hosted by Taylor and Francis Online.
Feedback stabilization of the thermal runaway by compression-decompression is studied by using a one-dimensional transport model that includes the effect of plasma profiles. The stability conditions required for the control system are derived from an eigenvalue analysis. The dynamic responses of plasma parameters to the control are also studied numerically by time integrating the transport equation with locally perturbed initial conditions. The stability conditions on the feedback control system are similar to previous results obtained from the zero-dimensional analysis. Time-dependent analysis shows that thermal runaway initiated by the local disturbances of temperature is suppressed, allowing a stationary burn of the space-dependent plasma.