ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Shunji Kakiuchi, Yoshiaki Kazawa, Hitachi Works, Masatsugu Nishi, Takashi Okazaki, Osamu Motojima, Atsuo Iiyoshi, Koji Uo
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1332-1337
Alternate Concepts | doi.org/10.13182/FST83-A23041
Articles are hosted by Taylor and Francis Online.
A conceptual design for a heliotron type nuclear fusion reactor is studied. Making most use of the advantageous features of heliotron, the reactor core is designed to be as compact as possible. The superconducting helical coil and cryostat are continuously wound around the vacuum vessel. Disassembly, assembly and repair of core components such as divertor, first wall and blanket modules are accomplished through port spaces between the slots of the helical coil. The reactor core is designed as compactly as possible. The large aspect ratio simplifies the maintenance work.