ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
E. Zawaideh, F. Kantrowitz, R.W. Conn, D. Dobrott, S. Tamor, D.C. Baxter
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1320-1325
Alternate Concepts | doi.org/10.13182/FST83-A23039
Articles are hosted by Taylor and Francis Online.
A physical model of plasma behavior in a negative tandem mirror reactor (NTMR) is used to explore the potential of this configuration as a reactor utilizing the deuterium-deuterium (DD) fuel cycle. It is found that relatively high values of plasma Q, in the range 15 to 20, may be possible in an NTMR if passive pumping of deeply trapped ions in the end cell is possible. Further, synchrotron radiation and hot electron end losses are dominant and require accurate modelling. If the physics elements of the model are verified by experimental findings, the results show negative tandem mirrors to be superior to their positive mode counterparts for DD burning.