ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
F. Carre, Z. Tilliette, J. Remoleur, E. Proust
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1101-1106
Blanket and First Wall Engineering | doi.org/10.13182/FST83-A23005
Articles are hosted by Taylor and Francis Online.
In the frame of the recent CEA studies aiming at the evaluation and the comparison of various candidate blanket concepts in view of their possible extrapolation to the commercial power reactor, the present work examines the potential interest of a 15 MPa pressurized water cooled Li17Pb83 blanket. After a brief presentation of the main reactor parameters, the body of the paper is devoted to the engineering optimization of the blanket arrangement, in terms of tritium breeding (minimization of the water content), coolant manifolding (minimum coolant cross section, minimum number of connections and easy access for maintenance) and adaptation to the steep power and irradiation gradients, typical of Li17Pb83 and crucial for a power reactor. Poloidal cooling direction, long heated length and segmentation into the radial direction (breeder rows) provide some answers to these preoccupations and could be recommended for the next step liquid blanket studies, in order to anticipate the requirements of the commercial reactor.