ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
Fusion Science and Technology
January 2026
Latest News
From uncertainty to vitality: The future of nuclear energy in Illinois
Nuclear is enjoying a bit of a resurgence. The momentum for reliable energy to support economic development around the country—specifically data centers and AI—remains strong, and strongly in favor of nuclear. And as feature coverage on the states in the January 2026 issue of Nuclear News made abundantly clear, many states now see nuclear as necessary to support rising electricity demand while maintaining a reliable grid and reaching decarbonization goals.
S. Pelloni, E.T. Chenga)
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 841-847
Neutronics and Shielding | doi.org/10.13182/FST83-A22965
Articles are hosted by Taylor and Francis Online.
The U.S. Fusion Engineering Device (FED) was used as a basis to investigate the uncertainties of several neutronics performance parameters that arise due to nuclear data uncertainties. The neutron flux distribution was calculated using the discrete-ordinates transport code ANISN. Nuclear data considered were from the VITAMIN-C (DLC-41) library. Atomic displacement rate in the TF coil copper stabilizer, nuclear heating in the epoxybased insulation material and TF coil, and energy multiplication were estimated. The cross section sensitivity study was performed using the sensitivity analysis code SWANLAKE. It shows that the copper atomic displacement rate in the inboard TF coil is known within ± 24 %. The nuclear heating in the inboard insulation material and TF coil are known within ± 21 % and ± 12.5 %, respectively. The uncertainties are primarily due to the iron inelastic scattering cross sections in the 14 MeV energy range.