ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Keiji Miyazaki, Yoshio Shimakawa, Shoji Inoue, Nobuo Yamaoka, Yoichi Fujii-E
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 733-738
Blanket and First Wall Engineering | doi.org/10.13182/FST83-A22947
Articles are hosted by Taylor and Francis Online.
A medium-scale lithium-loop with 40 /min and 3bar ratings was constructed to gain basic information on MHD effects on the flow and heat transfer characteristics. The loop has two parallel test sections for pressure drop and heat transfer experiments, which were made of 15.75 mm I.D. and 19.05 mm O.D. 316-SS tubes and placed between magnet poles of 500 mm vertical length. The pressure drop test section was provided with two strain gage type pressure transducers and the heat transfer test section with a 300 mm long 7.6 mm O.D. high flux electric heater pin. The experiment covered the ranges of the magnetic flux density: 0–1.0 T, The Li flow velocity: 0.2 –5.0 m/sec, the heat flux: 0–120 W/cm2 and the Li temperature: 350–400 °C. The experimental results of potential and pressure drop agreed well with the theoretical prediction based on the uniform-velocity thick wall model. The heat transfer coefficient, or Nusselt number, was decreased with increasing magnetic flux density, but not monotonically in a weak magnetic field region of 0.2–0.4 T, where a singular phenomenon , i.e. an elevation of Nusselt number was observed.