ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Keiji Miyazaki, Yoshio Shimakawa, Shoji Inoue, Nobuo Yamaoka, Yoichi Fujii-E
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 733-738
Blanket and First Wall Engineering | doi.org/10.13182/FST83-A22947
Articles are hosted by Taylor and Francis Online.
A medium-scale lithium-loop with 40 /min and 3bar ratings was constructed to gain basic information on MHD effects on the flow and heat transfer characteristics. The loop has two parallel test sections for pressure drop and heat transfer experiments, which were made of 15.75 mm I.D. and 19.05 mm O.D. 316-SS tubes and placed between magnet poles of 500 mm vertical length. The pressure drop test section was provided with two strain gage type pressure transducers and the heat transfer test section with a 300 mm long 7.6 mm O.D. high flux electric heater pin. The experiment covered the ranges of the magnetic flux density: 0–1.0 T, The Li flow velocity: 0.2 –5.0 m/sec, the heat flux: 0–120 W/cm2 and the Li temperature: 350–400 °C. The experimental results of potential and pressure drop agreed well with the theoretical prediction based on the uniform-velocity thick wall model. The heat transfer coefficient, or Nusselt number, was decreased with increasing magnetic flux density, but not monotonically in a weak magnetic field region of 0.2–0.4 T, where a singular phenomenon , i.e. an elevation of Nusselt number was observed.