ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
P. J. Brackenbury, G. D. Bazinet, W. C. Miller
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 724-729
Materials Engineering | doi.org/10.13182/FST83-A22945
Articles are hosted by Taylor and Francis Online.
The design and development of the Fusion Materials Irradiation Test (FMIT) Facility lithium system is outlined. This unique liquid lithium recirculating system, the largest of its kind in the world, is described with emphasis on the liquid lithium target assembly and other important components necessary to provide lithium flow to the target. The operational status and role of the Experimental Lithium System (ELS) in the design of the FMIT lithium system are discussed. Safety aspects of operating the FMIT lithium system in a highly radioactive condition are described. Potential spillage of the lithium is controlled by cell liners, by argon flood systems and by remote maintenance features. Lithium chemistry is monitored and controlled by a side-stream loop, where impurities measured by instruments are collected by hot and cold traps.