ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
G. D. Bazinet, W. F. Brehm, M. G. Down, D. K. Matlock
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 718-723
Materials Engineering | doi.org/10.13182/FST83-A22944
Articles are hosted by Taylor and Francis Online.
The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system-and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from ∼ 3700 to ∼ 6500 hours of exposure to flowing lithium at temperatures from 230° to 270°C and static lithium at temperatures from 200° to 500°C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system.