ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
G. D. Bazinet, W. F. Brehm, M. G. Down, D. K. Matlock
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 718-723
Materials Engineering | doi.org/10.13182/FST83-A22944
Articles are hosted by Taylor and Francis Online.
The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system-and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from ∼ 3700 to ∼ 6500 hours of exposure to flowing lithium at temperatures from 230° to 270°C and static lithium at temperatures from 200° to 500°C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system.