ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
R. C. Maninger
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 550-554
Environment and Safety | doi.org/10.13182/FST83-A22921
Articles are hosted by Taylor and Francis Online.
The Mirror Advanced Reactor Study (MARS) is a conceptual design study for a commercial fusion power reactor. One of the major goals of MARS is to develop design guidance so that fusion reactors can meet reasonable expectations for environmental health and safety. One of the first steps in the assessment of health and safety requirements was to examine what the guidelines might be for health and safety in disposal of radioactive wastes from fusion reactors. Then, using these guidelines as criteria, the impact of materials selection upon generation of radioactive wastes through neutron activation of structural materials was investigated. A conclusion of this work is that fusion power systems may need substantial engineering effort in new materials development and selection to meet the probable publicly acceptable levels of radioactivity for waste disposal in the future.