ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
L. W. Owen, N. A. Uckan
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 519-523
Plasma Engineering | doi.org/10.13182/FST83-A22916
Articles are hosted by Taylor and Francis Online.
Methods of improving single particle confinement in the vacuum magnetic field of an ELMO Bumpy Torus (EBT) reactor have heretofore focused on enhancement of the effective magnetic aspect ratio through the addition of relatively low current supplementary coils to the basic EBT configuration of toroidally linked circular mirror coils. This method of aspect ratio enhancement is reviewed and compared to the use of noncircular, D-shaped mirror coils. A critical parameter in this evaluation is the required radial thickness δ of the blanket-shield assembly in the coil throat. Results indicate that D-coils represent an attractive alternative to the supplementary coil configurations if future neutronics calculations show that δ 1.1–1.2 m gives adequate neutron shielding and acceptable minimal breeding ratio under the coils. D-coils are shown to be extremely effective in symmetrizing mod-B in the midplane, thereby giving good trapped particle confinement, hot electron ring centering, and reactor volume utilization. In addition, magnetics systems with D-coils are significantly less complicated, with easier assembly, maintenance, and access, than configurations in which there are two supplementary coils per sector.