The MCNP and ANISN codes have been used to obtain basic neutron albedo data for materials of interest for fusion applications. Simple physical models are presented which explain albedo dependence on pre- and post-reflection variables. The angular distribution of reflected neutrons is found to be roughly cose for all materials and all incident energies and angles. The energy spectra of reflected neutrons are presented, and it is shown that substantial variations in the total current at the outboard wall of a torus can be effected by changing materials behind the inboard wall. Analyses show that a maximum of four isolated incident current environments may be established simultaneously on the outboard side of a torus. With suitable inboard reflectors, global tritium breeding ratios significantly larger than unity can be produced in limited-coverage breeding blankets.