ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
B. J. Micklich, D. L. Jassby
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 477-482
Blanket and First Wall Engineering | doi.org/10.13182/FST83-A22909
Articles are hosted by Taylor and Francis Online.
The MCNP and ANISN codes have been used to obtain basic neutron albedo data for materials of interest for fusion applications. Simple physical models are presented which explain albedo dependence on pre- and post-reflection variables. The angular distribution of reflected neutrons is found to be roughly cose for all materials and all incident energies and angles. The energy spectra of reflected neutrons are presented, and it is shown that substantial variations in the total current at the outboard wall of a torus can be effected by changing materials behind the inboard wall. Analyses show that a maximum of four isolated incident current environments may be established simultaneously on the outboard side of a torus. With suitable inboard reflectors, global tritium breeding ratios significantly larger than unity can be produced in limited-coverage breeding blankets.