ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
L. G. Miller, J. M. Beeston, P. Y. Hsu, B. L. Harris
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 427-432
Materials Engineering | doi.org/10.13182/FST83-A22901
Articles are hosted by Taylor and Francis Online.
The lifetime of hollow beryllium pebbles in a hybrid fusion blanket was estimated using the existing radiation damage data base. The ductility of the irradiated beryllium at 400 to 500°C was estimated as ∼3%, and the loading stresses produced a strain of <0.3%. The failure analysis was based on the maximum stress theory. The principal stresses calculated were thermal and swelling. The estimated lifetimes for beryllium pebbles were <2 yr for those near the first wall of the blanket, >2 yr for those near the center, and >9 yr for those near the back wall. An overall average lifetime of 2.6 yr was calculated for the hollow beryllium pebbles. The snap-ring fuel form, not considered in this analysis, is expected to give longer beryllium lifetimes, provided stress concentration effects are not present.