ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
S. Takeji, A. Isayama, T. Ozeki, S. Tokuda, Y. Ishii, T. Oikawa, S. Ishida, Y. Kamada, Y. Neyatani, R. Yoshino, T. Takizuka, N. Hayashi, T. Fujita, G. Kurita, T. Matsumoto, T. Tuda, JT-60U Team
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 278-297
Technical Paper | doi.org/10.13182/FST02-A229
Articles are hosted by Taylor and Francis Online.
Progress in the understanding of magnetohydrodynamic (MHD) stability is summarized on JT-60U tokamak discharges with improved confinement such as the (hot-ion) H-mode, high-p mode, high-p H-mode, and reversed shear discharges. Transport barriers, which are essential for the improved confinement, play key roles in the local and global MHD stability owing to the local large pressure gradient and the related bootstrap current. Disruptive limits of these discharges are consistent with theoretical ideal kink-ballooning stability limits with low toroidal mode numbers n. Achievable limit is improved by broadening of the pressure profile with high plasma internal inductance, plasma shaping, and wall stabilization. Edge localized modes (ELMs) and barrier localized modes (BLMs), which are associated with edge and internal transport barriers, respectively, are analyzed carefully. Resistive interchange modes with n 3 are excited in the negative shear region in reversed shear discharges with the internal transport barrier and lead to major collapse occasionally through nonlinear coupling with a tearing mode in the positive shear region. MHD characteristics of low m/n (m: poloidal mode number) tearing modes, which are attributed to the neoclassical tearing mode, are investigated. Stabilization of tearing modes and control of sawtooth activity are demonstrated using the fundamental O-mode electron cyclotron wave injection. Resistive wall modes associated with current-driven and pressure-driven low n external kink modes are identified.