ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
S. Takeji, A. Isayama, T. Ozeki, S. Tokuda, Y. Ishii, T. Oikawa, S. Ishida, Y. Kamada, Y. Neyatani, R. Yoshino, T. Takizuka, N. Hayashi, T. Fujita, G. Kurita, T. Matsumoto, T. Tuda, JT-60U Team
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 278-297
Technical Paper | doi.org/10.13182/FST02-A229
Articles are hosted by Taylor and Francis Online.
Progress in the understanding of magnetohydrodynamic (MHD) stability is summarized on JT-60U tokamak discharges with improved confinement such as the (hot-ion) H-mode, high-p mode, high-p H-mode, and reversed shear discharges. Transport barriers, which are essential for the improved confinement, play key roles in the local and global MHD stability owing to the local large pressure gradient and the related bootstrap current. Disruptive limits of these discharges are consistent with theoretical ideal kink-ballooning stability limits with low toroidal mode numbers n. Achievable limit is improved by broadening of the pressure profile with high plasma internal inductance, plasma shaping, and wall stabilization. Edge localized modes (ELMs) and barrier localized modes (BLMs), which are associated with edge and internal transport barriers, respectively, are analyzed carefully. Resistive interchange modes with n 3 are excited in the negative shear region in reversed shear discharges with the internal transport barrier and lead to major collapse occasionally through nonlinear coupling with a tearing mode in the positive shear region. MHD characteristics of low m/n (m: poloidal mode number) tearing modes, which are attributed to the neoclassical tearing mode, are investigated. Stabilization of tearing modes and control of sawtooth activity are demonstrated using the fundamental O-mode electron cyclotron wave injection. Resistive wall modes associated with current-driven and pressure-driven low n external kink modes are identified.