ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
D. Dobrott
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 339-347
Alternate Fuels | doi.org/10.13182/FST83-A22888
Articles are hosted by Taylor and Francis Online.
Alternate fusion fuels, i.e., fuels based on cycles other than d-t, are advocated because of apparent safety and environmental advantages, such as low activation of reactor materials and the relaxation of the requirement for tritium breeding that one needs for a d-t fusion reactor. Nevertheless, the lower fusion reaction rates and the higher required operating temperatures have suggested that the reactor performance would be inferior to that of a d-t reactor. This question of reactor performance relative to fuel cycle is examined here in the restricted context d-t versus d-d (with variations) In tokamaks, reversed-field pinches and tandem mirrors, although results relative to other concepts and cycles are reviewed. Each reactor concept is assessed relative to the relevant physics, engineering, cost and safety issues. There are distinct physics and technical leverages for each of the concepts, but many common features as well. For example, all three concepts require no blanket tritium breeding and have a much lower tritium inventory than their d-t counterparts, as well as, longer blanket lifetime, greater blanket efficiency, higher neutron energy multiplication and less activation. The physics constraints are not necessarily greater and cost per net power output between d-t and d-d reactors can be comparable.