ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
L. Bromberg, D.R. Cohn, E. Bobrov, N. Diatchenko, R.J. LeClaire, J.E. Meyer, J.E.C. Williams
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 264-269
Alternate Fuels | doi.org/10.13182/FST83-A22879
Articles are hosted by Taylor and Francis Online.
DD-DT operation could provide a significant reduction in tritium breeding requirements in high field tokamak reactors without requiring very large increases in reactor size or plasma beta. Operation with the tritium breeding requirement is of particular interest. The reduced tritium breeding requirement makes possible the use of blanket designs which might be difficult to implement in a DT reactor (for example, LiAl2O3 blankets). The reduced blanket requirement could also be used for excess tritium production. Tradeoffs between tritium breeding and plasma performance requirements are investigated. Illustrative design features are developed for devices using both resistive magnets and superconducting magnets. Parameters for the device with superconducting magnets are BT = 7 T, β = 0.063, R = 9.6 m, a = 2.4 m, γ = 0.8, and Pwall = 2.2 MW/m2.