DD-DT operation could provide a significant reduction in tritium breeding requirements in high field tokamak reactors without requiring very large increases in reactor size or plasma beta. Operation with the tritium breeding requirement is of particular interest. The reduced tritium breeding requirement makes possible the use of blanket designs which might be difficult to implement in a DT reactor (for example, LiAl2O3 blankets). The reduced blanket requirement could also be used for excess tritium production. Tradeoffs between tritium breeding and plasma performance requirements are investigated. Illustrative design features are developed for devices using both resistive magnets and superconducting magnets. Parameters for the device with superconducting magnets are BT = 7 T, β = 0.063, R = 9.6 m, a = 2.4 m, γ = 0.8, and Pwall = 2.2 MW/m2.