ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J.A. Fillo, J.R. Powell, R. Benenati, F. Malick
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 184-188
Hybrids and Nonelectric Applications | doi.org/10.13182/FST83-A22865
Articles are hosted by Taylor and Francis Online.
The HYFIRE studies have investigated a number of technical approaches for using the thermal energy produced in a high-temperature Tokamak blanket to provide the electrical and thermal energy required to drive a high-temperature (>1000°C) water electyrolysis process. Current emphasis has been on two design points, one consistent with a peak electrolyzer temperature of ∼1150°C (based on current laboratory experience with high-temperature, solid electrolyte fuel cells), and a second, consistent with a peak electrolyzer temperature of ∼1300°C, which is an extrapolation of present experience. The technical integration of fusion and high-temperature electrolysis appears feasible.