ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
S. E. Attenberger, W. A. Houlberg
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 129-134
Plasma Engineering | doi.org/10.13182/FST83-A22856
Articles are hosted by Taylor and Francis Online.
Energy relaxation and spatial diffusion of fast alpha particles are incorporated into a multienergy group model which is coupled to a fluid transport code for the thermal plasma species. The multienergy group equations evolve the temporal- and spatial-dependent alpha particle distribution function and thus determine alpha particle heating and loss rates for arbitrary thermalization and diffusion models. The effects of deviations from classical, local thermalization on plasma performance are discussed. It is shown that spatial diffusion can lead to inversion of the fast ion distribution function even if thermalization remains classical. This inversion may drive instabilities and lead to anomalous thermalization. Ripple-induced spatial diffusion of fast alphas is used to illustrate the importance of extending the analysis to include pitch angle dependence.