ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
F. Carre, E. Proust, A. Rocaboy
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 93-98
Tritium | doi.org/10.13182/FST83-A22850
Articles are hosted by Taylor and Francis Online.
The tritium cycle of a fusion reactor is here-after investigated by a synthetic model of the tritium circulation between the blanket, the tritium recovery units from the breeder, the coolant, the plasma exhaust and the storage unit. Analytical expressions of the minimum required breeding capability and of the initial tritium supply are derived to analyse the sensitivity of these crucial parameters to the fractional burn up, to the tritium losses (radioactive and others) and to the processing time associated with the various units. As confirmed by the parametric study of a few typical situations, the necessary breeding capability and the initial tritium supply are essentially functions of the total equilibrium inventory. In addition, the distribution of this total inventory among the various units and the possible disproportion of the time scales required by different recovery processes, strongly influence the initial tritium requirement and the doubling time associated with given breeding performances.