ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
John P. Holdren, Steve Fetter
Fusion Science and Technology | Volume 4 | Number 3 | November 1983 | Pages 599-619
Special Section Contents | Radioactivation of Fusion Structures | doi.org/10.13182/FST83-A22810
Articles are hosted by Taylor and Francis Online.
Comparison of accident-hazard potentials associated with neutron-activation products in fusion reactors of various designs and structural materials suffers from a number of shortcomings in the readily available hazard-index data. Neither inventories of curies nor biological hazard potentials (BHPs) are satisfactory indices of hazard even if consistently computed, and between-study inconsistencies in neutronics packages and BHP calculations further obscure the meaning of comparisons based on these measures. We present here the results of internally consistent calculations of radioactive inventories, BHPs, and off-site dose potentials associated with the first walls of nine reactor-design/first-wall-material combinations. A recent mirror-reactor design reduces off-site dose potentials by a factor of 2 compared to a muchstudied early tokamak, for a given first-wall material. Holding design fixed, HT-9 ferritic steel offers a factor of 2 reduction in dose potential compared to Type 316 stainless steel. By the dose-potential measure, molybdenum is the worst of the materials investigated and silicon carbide is by jar the best. Hazards in realizable accidents depend not only on the hypothetical dose potentials, as calculated here, but also on the actual release fractions of first-wall (or other activated) material. Review of the theoretical and experimental evidence bearing on release fractions suggests that, for most candidate materials, high release fractions from designs containing liquid lithium cannot yet be convincingly ruled out.