ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
John P. Holdren, Steve Fetter
Fusion Science and Technology | Volume 4 | Number 3 | November 1983 | Pages 599-619
Special Section Contents | Radioactivation of Fusion Structures | doi.org/10.13182/FST83-A22810
Articles are hosted by Taylor and Francis Online.
Comparison of accident-hazard potentials associated with neutron-activation products in fusion reactors of various designs and structural materials suffers from a number of shortcomings in the readily available hazard-index data. Neither inventories of curies nor biological hazard potentials (BHPs) are satisfactory indices of hazard even if consistently computed, and between-study inconsistencies in neutronics packages and BHP calculations further obscure the meaning of comparisons based on these measures. We present here the results of internally consistent calculations of radioactive inventories, BHPs, and off-site dose potentials associated with the first walls of nine reactor-design/first-wall-material combinations. A recent mirror-reactor design reduces off-site dose potentials by a factor of 2 compared to a muchstudied early tokamak, for a given first-wall material. Holding design fixed, HT-9 ferritic steel offers a factor of 2 reduction in dose potential compared to Type 316 stainless steel. By the dose-potential measure, molybdenum is the worst of the materials investigated and silicon carbide is by jar the best. Hazards in realizable accidents depend not only on the hypothetical dose potentials, as calculated here, but also on the actual release fractions of first-wall (or other activated) material. Review of the theoretical and experimental evidence bearing on release fractions suggests that, for most candidate materials, high release fractions from designs containing liquid lithium cannot yet be convincingly ruled out.