ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Jungchung Jung
Fusion Science and Technology | Volume 4 | Number 3 | November 1983 | Pages 566-585
Special Section Contents | Radioactivation of Fusion Structures | doi.org/10.13182/FST83-A22808
Articles are hosted by Taylor and Francis Online.
Activation analysis has been conducted for several primary fusion blanket materials based on a model of a commercial tokamak fusion reactor design, STARFIRE. The blanket materials studied include two solid tritium breeders, viz., Li20 and α-LiAl02, and four candidate structural materials, viz., PCA stainless steel, V15Cr5Ti, Ti6Al4V, and Al-6063 alloys. The importance of breeder material activation is identified in terms of its impurity contents such as potassium, iron, nickel, molybdenum, and zirconium trace elements. The breeder activation is also discussed with regard to its potential for recycling and its impact on the lithium resource requirements. The structural material activation is analyzed based on two measures, volumetric radioactivity concentration and contact biological dose due to decay gamma emission. Using the radioactivity concentration measure, it is revealed that a substantial advantage exists from a viewpoint of radwaste management, which is inherent in fusion reactor designs based on potential low-activation alloys such as V15Cr5Ti, Ti6Al4V, and Al-6063. On the other hand, from the dose standpoint, the V15Cr5Ti alloy is found to be the only alloy for which one could realize a significant dose reduction (below 2.5 mrem/h) within ∼100 yr after shutdown, possibly by some extrapolation on alloy purification techniques.