ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Jungchung Jung
Fusion Science and Technology | Volume 4 | Number 3 | November 1983 | Pages 566-585
Special Section Contents | Radioactivation of Fusion Structures | doi.org/10.13182/FST83-A22808
Articles are hosted by Taylor and Francis Online.
Activation analysis has been conducted for several primary fusion blanket materials based on a model of a commercial tokamak fusion reactor design, STARFIRE. The blanket materials studied include two solid tritium breeders, viz., Li20 and α-LiAl02, and four candidate structural materials, viz., PCA stainless steel, V15Cr5Ti, Ti6Al4V, and Al-6063 alloys. The importance of breeder material activation is identified in terms of its impurity contents such as potassium, iron, nickel, molybdenum, and zirconium trace elements. The breeder activation is also discussed with regard to its potential for recycling and its impact on the lithium resource requirements. The structural material activation is analyzed based on two measures, volumetric radioactivity concentration and contact biological dose due to decay gamma emission. Using the radioactivity concentration measure, it is revealed that a substantial advantage exists from a viewpoint of radwaste management, which is inherent in fusion reactor designs based on potential low-activation alloys such as V15Cr5Ti, Ti6Al4V, and Al-6063. On the other hand, from the dose standpoint, the V15Cr5Ti alloy is found to be the only alloy for which one could realize a significant dose reduction (below 2.5 mrem/h) within ∼100 yr after shutdown, possibly by some extrapolation on alloy purification techniques.