ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
George R. Hopkins, E. T. Cheng
Fusion Science and Technology | Volume 4 | Number 3 | November 1983 | Pages 528-554
Special Section Contents | Radioactivation of Fusion Structures | doi.org/10.13182/FST83-A22805
Articles are hosted by Taylor and Francis Online.
The potential problems of radioactivation in the materials surrounding a neutron-producing fusion plasma were identified over 8 yr ago. At the same time, the use of low activation materials such as graphite, silicon carbide (SiC), and aluminum alloys was proposed for the structural material in fusion power reactors as a way to greatly reduce the major problems of radioactivity resulting from the more conventional stainless steel materials. A brief review of the current status of the reasons for low activation fusion is presented. Design studies with the low activation materials are not covered here. The consequences of low activation fusion are compared with stainless steel fusion structures and it is found that the radioactivity after reactor shutdown, as measured in curies, may be reduced by a factor of 1 000 00O. Even then, this limit is determined by impurities in the materials rather than the low activation materials themselves. Problems from decay heat with potential meltdown are reduced for aluminum and completely eliminated for SiC and graphite. Contact or hands-on maintenance may be performed in regions immediately behind the blanket that otherwise require fully remote operations. Small amounts of radioactive waste materials may be stored in surface facilities for the low activation concept. This is compared to the conventional steel systems where high-level radwaste geologic storage facilities may be required. Preliminary projected incremental costs for low activation fusion do not appear excessive but cost/benefit analyses are needed to evaluate the optimum degree of activation reduction. Low activation fusion can help assure the full potential of fusion in providing an environmentally benign energy source with a high degree of safety and public acceptance.