ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
K. Ushigusa, S. Ide, T. Oikawa, T. Suzuki, Y. Kamada, T. Fujita, Y. Ikeda, O. Naito, M. Matsuoka, T. Kondoh, A. Isayama, M. Seki, T. Imai, K. Sakamoto, N. Umeda, K. Hamamatsu, T. Fujii, K. Uehara, T. Yamamoto, Y. Miura, M. Kikuchi, M. Kuriyama, H. Ninomiya
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 255-277
Technical Paper | doi.org/10.13182/FST02-A228
Articles are hosted by Taylor and Francis Online.
Studies on noninductive current drive (CD) and development of an integrated steady-state high performance operation in JT-60 are reviewed. Experiments on lower hybrid current drive (LHCD) in JT-60 have shown a large noninductive current up to 3.6 MA, high current drive efficiency of 3.5 × 1019 m-2A/W, and a flexible current profile control. Basic studies on LH waves, such as an effect of accessibility condition, fast electron behaviors, and so on, in JT-60 have contributed to understanding LHCD physics. Significant progress in neutral beam current drive (NBCD) has been made in JT-60 by testing the performance of negative ion-based (N) neutral beam injection (NBI) (N-NBI). The CD efficiency of ~1.5 × 1019 m-2A/W and negative ion-based neutral beam (N-NB) driven current of ~1 MA have been demonstrated in N-NBCD. Strongly localized noninductive driven current by electron cyclotron current drive (ECCD) was identified with a fundamental O-mode scheme from a low field side injection. ECCD in JT-60 has shown CD efficiency of 0.5 × 1019 m-2A/W and EC-driven current of 0.2 MA. Modification of local current profile was demonstrated and was used for suppression of neoclassical tearing mode. Based on these developments, two integrated steady-state operation scenarios were developed in JT-60, which are reversed magnetic shear (R/S) plasmas and high p ELMy H-mode. In these operation regimes, discharges have been sustained near the steady-state current profile under full noninductive current drive (High p; HHy2 ~ 1.4 and N ~ 2.5 with N-NB, R/S; HHy2 ~ 2.2 and N ~ 2 with fBS ~ 80%). High performance plasmas with a high nDoETio and at high normalized density were also produced under fully noninductive condition in high p ELMy H-mode and R/S mode.