ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
B. R. Wienke
Fusion Science and Technology | Volume 4 | Number 3 | November 1983 | Pages 426-436
Technical Papers | Plasma Engineering | doi.org/10.13182/FST83-A22792
Articles are hosted by Taylor and Francis Online.
A one-dimensional, multigroup, discrete ordinates technique for computing electron energy deposition in plasmas is detailed. The Fokker-Planck collision operator is employed in the continuous approximation and electric fields (considered external) are included in the equation. Bremsstrahlung processes are not treated. Comparisons with analytic and Monte Carlo results are given. Fits to deposition profiles and energy scaling are proposed and discussed for monoenergetic and Maxwellian sources in the range, 0 to 150 keV, with and without uniform fields. The techniques employed to track electrons are generally useful in situations where the background plasma temperature is an order of magnitude smaller than the electron energy and collective plasma effects are negligible. We have used the approach successfully in laser pellet implosion applications.