ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
B. R. Wienke
Fusion Science and Technology | Volume 4 | Number 3 | November 1983 | Pages 426-436
Technical Papers | Plasma Engineering | doi.org/10.13182/FST83-A22792
Articles are hosted by Taylor and Francis Online.
A one-dimensional, multigroup, discrete ordinates technique for computing electron energy deposition in plasmas is detailed. The Fokker-Planck collision operator is employed in the continuous approximation and electric fields (considered external) are included in the equation. Bremsstrahlung processes are not treated. Comparisons with analytic and Monte Carlo results are given. Fits to deposition profiles and energy scaling are proposed and discussed for monoenergetic and Maxwellian sources in the range, 0 to 150 keV, with and without uniform fields. The techniques employed to track electrons are generally useful in situations where the background plasma temperature is an order of magnitude smaller than the electron energy and collective plasma effects are negligible. We have used the approach successfully in laser pellet implosion applications.