ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
E. T. Cheng, C. P. C. Wong Ga
Fusion Science and Technology | Volume 4 | Number 1 | July 1983 | Pages 164-169
Technical Paper | Nonelectrial Applications | doi.org/10.13182/FST83-A22782
Articles are hosted by Taylor and Francis Online.
A scoping study was performed to explore tritium breeding and energy-temperature splits in various blanket concepts for high-temperature process heat. Temperature limits for the lithium materials necessitate two blanket zones. One delivers heat at moderate temperatures (≾600°C) and breeds tritium. The other is a nonbreeding zone that produces heat at high temperatures. We find that a system where all blanket modules breed tritium delivers more high-temperature heat than one where only some of the blanket modules produce tritium. Of those considered, a design where the high-temperature zone is placed between two breeding zones produces the highest fraction of high-temperature heat. When liquid lithium, Li7Pb2 and Li2O tritium breeding materials are employed with two breeding zones, a tritium breeding ratio of 1.1 can be achieved while delivering 30 to 40% of the blanket heat at high temperature.