ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
L. R. Grisham, J. D. Strachan
Fusion Science and Technology | Volume 4 | Number 1 | July 1983 | Pages 46-53
Technical Paper | Plasma Engineering | doi.org/10.13182/FST83-A22773
Articles are hosted by Taylor and Francis Online.
While present experiments are evaluated on the basis of confinement time, it is the fusion power multiplication factor, Q, and the fusion power that will be the parameters measuring the performance of ignition experiments and fusion reactors. We have determined the relationship of Q to τE and the Lawson number, nτE, for ohmically heated plasmas from the Princeton large tokamak (PLT). The values Q, τE, and nτE all increase with density at low densities. Above e ≃ 4 × 1013 cm−3, τEe ≃ 30 ms, or eτEe ≃ 1.2 × 1012 cm−3s, Q saturates; Q scaling has also been obtained on PLT as a function of toroidal magnetic field, plasma current, and auxiliary heating power.