ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
William W. Simmons, Robert O. Godwin
Fusion Science and Technology | Volume 4 | Number 1 | July 1983 | Pages 8-24
Overview | Nova | doi.org/10.13182/FST4-1-8
Articles are hosted by Taylor and Francis Online.
The Nova laser fusion research facility, currently under construction at Lawrence Livermore National Laboratory (LLNL), will provide researchers with powerful new tools for the study of nuclear weapons physics and inertial confinement fusion (ICF). The Nova laser system consists of ten large (74-cm-diam) beams, focused and aligned precisely so that their combined energy is brought to bear for a small fraction of a second on a tiny target containing thermonuclear fuel (deuterium and tritium). The ultimate goal of the LLNL ICF program is to produce fusion microexplosions that release several hundred times the energy that the laser delivers to the target. Such an achievement would make ICF attractive for military and civilian applications. The U.S. Department of Energy has approved construction of ten Nova laser beams, harmonic-conversion crystal arrays, and the associated laboratory buildings. By the mid 1980s, Nova will produce the extremes of heat and pressure required to explore the physical region of ignition of the thermonuclear fuel Additional developments in the area of high-efficiency drivers and reactor systems may make ICF attractive for commercial power production.