ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Y. Iwai, Y. Misaki, T. Hayashi, T. Yamanishi, S. Konishi, M. Nishi, R. Ninomiya, S. Yanagimachi, S. Senrui, H. Yoshida
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1126-1130
Isotope Separation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22759
Articles are hosted by Taylor and Francis Online.
The water detritiation system (WDS) of tritium plant for the International Thermonuclear Experimental Reactor (ITER) was designed. The concept of the Combined Electrolysis Catalytic Exchange (CECE) process was selected for the WDS. The design conditions are (a) tritium concentration of waste water: 3.7 × 1010∼3.7 × 1011 Bq/kg, (b) waste water flow rate: 20 kg/h (1100 mol/h), a net working rate: 300 days, annual capacity: 150 tons/year (c) tritium concentration in the H2 discharged to environment: 6.5 x 101 Bq/m3, (d) tritium concentration in the H2O vapor discharged to environment: 3.7 x 103 Bq/m3, (e) tritium concentration in the electrolyzer: ∼ 1.85 × 1013 Bq/kg. Tritium concentration in the electrolyzer is determined considering the lifetime of the electrolyzer which depends on tritium concentration. Design value of height of a unit (30cm) of water-hydrogen isotopic exchange column and the correlation between the column internal flow rates and the column diameter were determined based on similar system for Japanese advanced thermal reactor (Fugen) moderated with heavy water.