ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Axel Klix, Kentaro Ochiai, Yasuaki Terada, Yuichi Morimoto, Michinori Yamauchi, Junichi Hori, Takeo Nishitani
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1040-1043
Blanket Material and Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22742
Articles are hosted by Taylor and Francis Online.
The JAERI Fusion Neutronics Source (FNS) group has carried out experiments with breeding blanket mock-ups composed of layers of beryllium, ferritic steel F82H and 6Li enriched lithium titanate ceramics, Li2TiO3. Pellets of enriched Li2TiO3 with a diameter of 12 mm and a thickness of 2 mm were used as detectors inside the tritium breeding layer. After irradiation, the pellets were dissolved and the tritium activity in the sample solution was measured by liquid scintillation counting.The experimentally obtained tritium production profile in the lithium titanate layer agreed well with MCNP calculations within the estimated error range of the experimental values (10%). Tritium loss from the pellet during storage time at room temperature, a few days, was experimentally found to be negligible.