ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
S. Tanzawa, S. Hiroki, T. Abe
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1004-1008
Purification and Chemical Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22735
Articles are hosted by Taylor and Francis Online.
Experiments on separation of the exhaust gas from fusion reactors by using a Continuous Circulation Chromatograph method ( C3 method ) have been performed for use in a fuel cycle of the fusion reactor. In these experiments, a molecular-sieve was selected for the adsorbent material. And, H2/He, D2/He mixed gases and Ar were used as the sample gases and the carrier gas, respectively. It was confirmed that the mixed gases with various composition ratios were continuously separated to each gas composition at a room temperature and below an atmospheric pressure, within a detectable limit of the quadrupole mass spectrometer we used. This separation method can be applied to the D2-T2/He mixed gas and simplify the fusion fuel cycle, where the He and other impurities are directly removed from the plasma exhaust gas within a vacuum pumping system.