ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
G.A. Esteban, F. Legarda, L.A. Sedano, A. Perujo
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 948-953
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22725
Articles are hosted by Taylor and Francis Online.
An accurate and particular description of isotope effects in hydrogen transport within structural martensitic steels is highly needed in nuclear fusion technology in order to describe the tritium-material interaction on the basis of the properties of the non-radioactive hydrogen isotopes (protium and deuterium). As a result, tritium transport investigation becomes technologically more feasible because a cost-effective radioactive device is not mandatory. Additionally, a precise isotopic description allows differentiating the behaviour of the fuel-components deuterium and tritium within the blanket structures in reactor operation conditions. A time-dependent gas-phase isovolumetric desorption technique has been used to evaluate the isotopic effects in the diffusive transport parameters of hydrogen in an 8% CrWVTa reduced activation martensitic steel in the temperatures range 423 to 892 K and driving pressures from 4·104 to 1·105 Pa. Experiments have been run with both protium and deuterium obtaining their respective transport parameters diffusivity (D), Sieverts' constant (Ks), permeability (Φ), the trap site density (ηt) and the trapping activation energy (Et).