ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Ikuji Takagi, Ryoutarou Sugiura, Kazushi Shirai, Kunio Higashi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 902-906
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22715
Articles are hosted by Taylor and Francis Online.
Isotropic graphite of ETP-10 was exposed to a deuterium rf-plasma at room temperature and depth profiles of deuterium near the plasma-facing surface were observed by a nuclear reaction analysis. The depth profile consisted of two parts, which were a peak at the surface and a gradual slope downward to the depths. The surface density of deuterium estimated from the peak area was saturated with longer time and hardly decreased after the exposure. This was explained by that the incident deuterium atoms from the plasma were absorbed on deuterium-free sites and absorbed atoms were not desorbed. The deuterium concentration in the bulk increased nearly in proportion to the square root of time and gradually decreased after the plasma exposure. This was explained by a simple diffusion model and an apparent diffusion coefficient was found to be 2x10−18 m2s−1 from the depth profile.