ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ikuji Takagi, Ryoutarou Sugiura, Kazushi Shirai, Kunio Higashi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 902-906
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22715
Articles are hosted by Taylor and Francis Online.
Isotropic graphite of ETP-10 was exposed to a deuterium rf-plasma at room temperature and depth profiles of deuterium near the plasma-facing surface were observed by a nuclear reaction analysis. The depth profile consisted of two parts, which were a peak at the surface and a gradual slope downward to the depths. The surface density of deuterium estimated from the peak area was saturated with longer time and hardly decreased after the exposure. This was explained by that the incident deuterium atoms from the plasma were absorbed on deuterium-free sites and absorbed atoms were not desorbed. The deuterium concentration in the bulk increased nearly in proportion to the square root of time and gradually decreased after the plasma exposure. This was explained by a simple diffusion model and an apparent diffusion coefficient was found to be 2x10−18 m2s−1 from the depth profile.