ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
T. Tanabe, K. Miyasaka, K. Sugiyama, K. Masaki, K. Kodama, N. Miya
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 877-881
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22710
Articles are hosted by Taylor and Francis Online.
Tritium distributions on the graphite tiles used as plasma facing tiles in divertor tiles, dome units, and the baffle plates of JT-60U were successfully measured. The highest tritium level was found at the top of the dome or the private region and the outer baffle plates, where the plasma did not hit but the distance from the plasma was the shortest. For the divertor tiles, the tritium retention was very small. Such tritium distribution observed in JT-60U tiles can be well explained by the homogeneous implantation of rather high energy tritium and thermal release due to the heat load.