ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Darleane C. Hoffman, transuranium element pioneer, dies at age 98
Hoffman
Nuclear chemist Darleane D. Hoffman, who was renowned for her research on transuranium elements that advanced the understanding of nuclear fission, died on September 4 at her home in Menlo Park, Calif. She was 98.
Iowa origins: Hoffman was born on November 8, 1926, in Terril, Ia. She attended Iowa State University, where she earned a bachelor’s degree in chemistry in 1948 and a doctorate in physical (or nuclear) chemistry in 1951. She then began working as a chemist at Oak Ridge National Laboratory.
Los Alamos research: In 1953, Hoffman began a research position at Los Alamos National Laboratory, where she conducted pioneering work on spontaneous fission. She served as the lab’s first female division leader in charge of the Chemistry and Nuclear Chemistry Division.
A. Perevezentsev, J. Hemmerich
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 797-800
Hydride and Storage | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22694
Articles are hosted by Taylor and Francis Online.
Storage of tritium in the form of metal hydride is a common technique in tritium handling facilities and is generally acknowledged as the only option for the storage of large tritium inventories in future fusion reactor applications. Since accounting for large inventories by the conventional TPVC (Temperature, Pressure, Volume, Concentration) is very cumbersome, it is highly desirable to perform accounting directly by the application of calorimetric methods, for example based on monitoring of temperature rise in the tritium storage container caused by heat of the tritium decay (1.95W/mol.T2). Following an earlier evaluation1 of the JET tritium storage containers by electrical simulation of heat of the tritium decay the viability of the method was proven by adiabatic calorimetry with known tritium inventories up to ≈5900TBq.