ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J. E. Klein, J. R. Brenner, E. F. Dyer
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 782-787
Hydride and Storage | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22691
Articles are hosted by Taylor and Francis Online.
A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed and tested. The bed contained 12.6 kg of a La-Ni-Al alloy and used aluminum foam to improve heat transfer within the bed. Steady-state temperature measurements made at constant power showed a nonuniform bed temperature profile. Protium absorption rates were measured at pressures of 253 kPa, 413 kPa, and 680 kPa with forced convection cooling air flow rates ranging from 50 to 150 SLPM air. Absorption tests were also performed simulating the absorption of tritium and a method for estimating this rate using protium absorption data presented. Desorption rates were measured at pressures ranging from 20 kPa to 933 kPa using dual and single 400 watt electric heaters and found desorption rates were only impacted at the beginning and the end of a desorption cycle by the use of a single heater.