ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
A. Perevezentsev, K. Watanabe, M. Matsuyama, Y. Torikai
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 746-750
Decontamination and Waste | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22686
Articles are hosted by Taylor and Francis Online.
Tritium distribution in stainless steel type 316 exposed to hydrogen containing 32% of tritium at room and elevated temperatures was studied using thermal desorption, analysis of bremsstrahlung spectrums and acid etching techniques. All samples exhibit a large fraction of the overall tritium inventory concentrated in a thin sub-surface layer of ≈15µm thickness, where tritium concentration is by ≈2 order of magnitude larger than that in the bulk. Observed tritium depth profiles are in contradiction with a classical mechanism of hydrogen penetration to metals by atomic diffusion.