ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
L. C. Cadwallader, D. A. Petti
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 635-641
Safety and Safety System | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22665
Articles are hosted by Taylor and Francis Online.
The current approach envisioned to fabricate targets for inertial fusion energy power plants is diffusion of a deuterium-tritium (D-T) gas mixture through the walls of the plastic shell targets at very high pressures (peaking at values up to 128 MPa) and modest temperatures (∼ 400 K). The use of high gas pressure during fabrication is required so that the D-T gas rapidly diffuses into the pellet, which enables the fabrication facility to satisfy the power plant's fueling requirements. D-T gas mixtures at such high pressures raise safety concerns that must be addressed in the design. The combustion of D and T in air is discussed in this paper, as well as high pressure gas hazards and possible means to mitigate these hazards. The US Department of Energy guidance on tritium handling and storage is summarized here. Issues of safety and reliability of various protection systems are also discussed to support designers in tradeoff analyses of confnement types.