ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Chris Day, August Mack, Manfred Glugla, David K. Murdoch
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 602-606
Device, Facility, and Operation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22659
Articles are hosted by Taylor and Francis Online.
The tritium inventory of an experimental fusion reactor like ITER is determined by a broad range of influential factors. The tritium retention in the vacuum system is one important contribution to the overall tritium inventory. The high vacuum system for ITER is based on a set of cryogenic pumps, and sees the whole spectrum of tritiated gas species. The cryopumps are accumulation pumps; thus, the semi-permanent tritium inventory present in them is governed by the effectiveness of pump regeneration. Moreover, a permanent inventory background must also be envisaged. This paper delineates the staggered pump concept and a multi-stage regeneration scheme as main measures for step-wise minimisation of the tritium inventory in the high vacuum pump system and outlines the different contributions which add to it. By these methods, the 268 g of tritium inventory present after nominal long pulse operation of ITER, depending on the chosen fuelling case, can be reduced to 6 g in the pumps themselves, plus up to 100 g of codeposited tritium needing recovery clean-up.